Join us

Recent News and Updates

JEE Advanced 2014 Exam Dates | Syllabus | Pattern | Eligibility | Cut off | Result

JEE Advanced 2014

Summary of JEE Advanced 2013

In the 45th meeting of the Council of IITs, held on 27th June, 2012, new format for IITs admission was adopted, as per this new format – “Admission to IITs will be based only on category wise All India Rank (AIR) in JEE (Advanced)
subject to condition that such candidates are in the top 20 percentile of successful candidates of their Boards in applicable categories”.

Accordingly, admissions to the undergraduate programmes at IITs and ISM, Dhanbad, for the academic session starting in July,2013, were done based on the rank of a candidate in the JEE(Advanced)-2013.

The candidates were to take the Paper 1 of JEE(Main), conducted by
the CBSE, on 7th April, 2013 (offline) and 9th, 22nd, 23rd and 25th April (online).

The top 1,50,000 candidates, from all categories, based on their JEE(Main) scores, were to be eligible for appearing in JEE(Advanced) – 2013.

Procedure used to select top 1, 50, 000 students

The following procedure was used for selecting the 1,50,000 candidates who were eligible to appear for JEE (Advanced)- 2013 based on their performance in JEE (Main) -2013.

  1. 50.5% of the 1,50,000 (75,750 candidates) were taken from the top rankers of the Common Merit List (CML) of JEE (Main). 27% (40,500), 15% (22,500) and 7.5% (11,250) candidates were taken from the top rankers of the category rank lists of OBC-NCL, SC and ST, respectively. The candidates figuring in the category rank lists were those who did not figure in the 75,750 candidates chosen from the CML.
  2. 3% of the candidates selected within each category were those belonging to PwD (Persons with Disability) sub-category, who figure in the respective rank lists of JEE (Main).

Only the candidate’s aggregate marks in JEE (Main) was considered and no tie-break mechanism was implemented at this stage. This made the list of candidates eligible to appear in JEE (Advanced)-2013 slightly more than 1,50,000 due to bunching of candidates with the same aggregate marks at the bottom of each category.

A total of 1,52,351 candidates were eligible to apply for JEE(Advanced). Of these, 1,26,749 candidates registered for the JEE (Advanced) – 2013.

JEE Advanced 2013 result and Question paper Analysis

In the 47th meeting of the Council of IITs, IITs agreed to continue the same format for 2014 also. IIT Kharagpur will conduct JEE Advanced 2014.

Check complete details here

JEE Advanced 2014 Notification/Important Dates

  • JEE Advanced 2014 will be held on May 25th.
  • JEE Advanced 2014 Answer keys will be release on 1st June 2014
  • JEE Advanced 2014 Result will be out on 19th June 2014

JEE Advanced 2014 Examination dates and timings, check this link

JEE Advanced 2014 Eligibility

Age Limit

Candidates  of  GE  and  OBC  categories  must  have  been  born  on  or  after  October  01, 1989  and  those  of  SC,  ST  and  PwD  categories  must  have  been  born  on  or  after October 01, 1984.

Number of Attempts in JEE (Advanced)

A  candidate  can  attempt  JEE  (Advanced)  a  maximum  of  two  times  and  that  too,  in consecutive years. However, being in the top 1, 50,000 in JEE (Main)-2014 is the prime
eligibility  criterion  applicable  to  all  irrespective  of  the  attempt  number.  Those  who appeared  in  their  Qualifying  Examination  (QE)  in  2012  or  earlier  (irrespective  of whether they passed or failed) are NOT ELIGIBLE. Candidates who attempted IIT-JEE in 2012 or earlier, are also NOT ELIGIBLE to appear in JEE (Advanced)-2014.

Earlier Admission Taken Through JEE (Advanced)-2013

Candidates  who  had  earlier  taken  admission  (irrespective  of  whether  or  not  they continued  in  any  of  the  programmes)  or  accepted  admission by  paying  the  admission fee  at  any  of  the  IITs  or  ISM  Dhanbad,  are  NOT  ELIGIBLE  to  appear  in  JEE (Advanced)-2014.

Performance Criteria in Qualifying Examination (QE)

Admission to IITs and ISM Dhanbad will be based only on category wise All India Rank (AIR) in JEE (Advanced)-2014 subject to the condition that such candidates are among the top 20 percentile of successful candidates of their Boards in respective categories. PwD  candidates  will be given  relaxation  in  the eligibility  criteria  as  per  the  decision  of the Joint  Admission  Board  of JEE (Advanced)-2014 in consonance with  the  directives of the Government of India.   In  case  a  Board  does  not  provide  the  information  regarding  the  cut-off  for  top  20 percentile  of  successful  candidates  in  respective  category,  the  candidate  will  have  to produce  a  certificate  from  the  concerned  Board  stating  that he/she  falls  within  the  top 20  percentile  of  successful  candidates.  If  the  candidate  fails  to  do  so,  then  the CBSE percentile will be used as the criteria for deciding minimum cut off marks in qualifying examination.

Candidates  who  passed  their  QE  in  2013 will  be  considered  on  the  basis  of  the top 20 percentile cut off marks of their boards in 2013. Candidates, who passed in  2013  and  would  improve  their  performance  of  QE  in  2014,  will  be  considered on the basis of 2014 cut off marks of their respective Boards in their respective category.

If  any  Board  awards  only  letter  grades  without  providing  an  equivalent  percentage  of marks  on  the  grade  sheet,  the  candidate  should  obtain  a  certificate  from  the  Board specifying the equivalent marks, and submit it at the time of online acceptance of seat. In case such a certificate is not provided the decision taken by the Joint Implementation Committee (JIC) of JEE (Advanced)-2014 will be final.  Foreign nationals from foreign boards with valid AIR should have minimum 60% marks in aggregate or 6.5 GPA (on 10 point scale) to be eligible for admission.

JEE Advanced 2014 Syllabus

For complete JEE Advanced 2014 Syllabus check this

JEE Advanced 2014 Syllabus – Physics

General: Units and dimensions, dimensional analysis; least count, significant figures; Methods of measurement and error analysis for physical quantities pertaining to the following experiments: Experiments based on using Vernier calipers and screw gauge (micrometer), Determination of g using simple pendulum, Young’s modulus by Searle’s method, Specific heat of a liquid using calorimeter, focal length of a concave mirror and a convex lens using u-v method, Speed of sound using resonance column, Verification of Ohm’s law using voltmeter and ammeter, and specific resistance of the material of a wire using meter bridge and post office box.

Mechanics: Kinematics in one and two dimensions (Cartesian coordinates only), projectiles; Uniform Circular motion; Relative velocity.

Newton’s laws of motion; Inertial and uniformly accelerated frames of reference; Static and dynamic friction; Kinetic and potential energy; Work and power; Conservation of linear momentum and mechanical energy.

Systems of particles; Centre of mass and its motion; Impulse; Elastic and inelastic collisions.

Law of gravitation; Gravitational potential and field; Acceleration due to gravity; Motion of planets and satellites in circular orbits; Escape velocity.

Rigid body, moment of inertia, parallel and perpendicular axes theorems, moment of inertia of uniform bodies with simple geometrical shapes; Angular momentum; Torque; Conservation of angular momentum; Dynamics of rigid bodies with fixed axis of rotation; Rolling without slipping of rings, cylinders and spheres; Equilibrium of rigid bodies; Collision of point masses with rigid bodies.

Linear and angular simple harmonic motions.

Hooke’s law, Young’s modulus.

Pressure in a fluid; Pascal’s law; Buoyancy; Surface energy and surface tension, capillary rise; Viscosity (Poiseuille’s equation excluded), Stoke’s law; Terminal velocity, Streamline flow, equation of continuity, Bernoulli’s theorem and its applications.

Wave motion (plane waves only), longitudinal and transverse waves, superposition of waves; Progressive and stationary waves; Vibration of strings and air columns;Resonance; Beats; Speed of sound in gases; Doppler effect (in sound).

Thermal physics: Thermal expansion of solids, liquids and gases; Calorimetry, latent heat; Heat conduction in one dimension; Elementary concepts of convection and radiation; Newton’s law of cooling; Ideal gas laws; Specific heats (Cv and Cp for monoatomic and diatomic gases); Isothermal and adiabatic processes, bulk modulus of gases; Equivalence of heat and work; First law of thermodynamics and its applications (only for ideal gases); Blackbody radiation: absorptive and emissive powers; Kirchhoff’s law; Wien’s displacement law, Stefan’s law.

Electricity and magnetism: Coulomb’s law; Electric field and potential; Electrical potential energy of a system of point charges and of electrical dipoles in a uniform electrostatic field; Electric field lines; Flux of electric field; Gauss’s law and its application in simple cases, such as, to find field due to infinitely long straight wire, uniformly charged infinite plane sheet and uniformly charged thin spherical shell.

Capacitance; Parallel plate capacitor with and without dielectrics; Capacitors in series and parallel; Energy stored in a capacitor.

Electric current; Ohm’s law; Series and parallel arrangements of resistances and cells; Kirchhoff’s laws and simple applications; Heating effect of current.

Biot Savart’s law and Ampere’s law; Magnetic field near a current-carrying straight wire, along the axis of a circular coil and inside a long straight solenoid; Force on a moving charge and on a current-carrying wire in a uniform magnetic field.

Magnetic moment of a current loop; Effect of a uniform magnetic field on a current loop; Moving coil galvanometer, voltmeter, ammeter and their conversions.

Electromagnetic induction: Faraday’s law, Lenz’s law; Self and mutual inductance; RC, LR and LC circuits with D.C. and A.C. sources.

Optics: Rectilinear propagation of light; Reflection and refraction at plane and spherical surfaces; Total internal reflection; Deviation and dispersion of light by a prism; Thin lenses; Combinations of mirrors and thin lenses; Magnification.

Wave nature of light: Huygen’s principle, interference limited to Young’s double-slit experiment.

Modern physics: Atomic nucleus; Alpha, beta and gamma radiations; Law of radioactive decay; Decay constant; Half-life and mean life; Binding energy and its calculation; Fission and fusion processes; Energy calculation in these processes.

Photoelectric effect; Bohr’s theory of hydrogen-like atoms; Characteristic and continuous X-rays, Moseley’s law; de Broglie wavelength of matter waves.

JEE Advanced 2014 Syllabus – Chemistry

Physical chemistry

General topics: Concept of atoms and molecules; Dalton’s atomic theory; Mole concept; Chemical formulae; Balanced chemical equations; Calculations (based on mole concept) involving common oxidation-reduction, neutralisation, and displacement reactions; Concentration in terms of mole fraction, molarity, molality and normality.

Gaseous and liquid states: Absolute scale of temperature, ideal gas equation; Deviation from ideality, van der Waals equation; Kinetic theory of gases, average, root mean square and most probable velocities and their relation with temperature; Law of partial pressures; Vapour pressure; Diffusion of gases.

Atomic structure and chemical bonding: Bohr model, spectrum of hydrogen atom, quantum numbers; Wave-particle duality, de Broglie hypothesis; Uncertainty principle; Qualitative quantum mechanical picture of hydrogen atom, shapes of s, p and d orbitals; Electronic configurations of elements (up to atomic number 36); Aufbau principle; Pauli’s exclusion principle and Hund’s rule; Orbital overlap and covalent bond; Hybridisation involving s, p and d orbitals only; Orbital energy diagrams for homonuclear diatomic species; Hydrogen bond; Polarity in molecules, dipole moment (qualitative aspects only); VSEPR model and shapes of molecules (linear, angular, triangular, square planar, pyramidal, square pyramidal, trigonal bipyramidal, tetrahedral and octahedral).

Energetics: First law of thermodynamics; Internal energy, work and heat, pressure-volume work; Enthalpy, Hess’s law; Heat of reaction, fusion and vapourization; Second law of thermodynamics; Entropy; Free energy; Criterion of spontaneity.

Chemical equilibrium: Law of mass action; Equilibrium constant, Le Chatelier’s principle (effect of concentration, temperature and pressure); Significance of ΔG and ΔG° in chemical equilibrium; Solubility product, common ion effect, pH and buffer solutions; Acids and bases (Bronsted and Lewis concepts); Hydrolysis of salts.

Electrochemistry: Electrochemical cells and cell reactions; Standard electrode potentials; Nernst equation and its relation to ΔG; Electrochemical series, emf of galvanic cells; Faraday’s laws of electrolysis; Electrolytic conductance, specific, equivalent and molar conductivity, Kohlrausch’s law; Concentration cells.

Chemical kinetics: Rates of chemical reactions; Order of reactions; Rate constant; First order reactions; Temperature dependence of rate constant (Arrhenius equation).

Solid state: Classification of solids, crystalline state, seven crystal systems (cell parameters a, b, c, α, β, γ), close packed structure of solids (cubic), packing in fcc, bcc and hcp lattices; Nearest neighbours, ionic radii, simple ionic compounds, point defects.

Solutions: Raoult’s law; Molecular weight determination from lowering of vapour pressure, elevation of boiling point and depression of freezing point.

Surface chemistry: Elementary concepts of adsorption (excluding adsorption isotherms); Colloids: types, methods of preparation and general properties; Elementary ideas of emulsions, surfactants and micelles (only definitions and examples).

Nuclear chemistry: Radioactivity: isotopes and isobars; Properties of α, β and γ rays; Kinetics of radioactive decay (decay series excluded), carbon dating; Stability of nuclei with respect to proton-neutron ratio; Brief discussion on fission and fusion reactions.

Inorganic Chemistry

Isolation/preparation and properties of the following non-metals: Boron, silicon, nitrogen, phosphorus, oxygen, sulphur and halogens; Properties of allotropes of carbon (only diamond and graphite), phosphorus and sulphur.

Preparation and properties of the following compounds: Oxides, peroxides, hydroxides, carbonates, bicarbonates, chlorides and sulphates of sodium, potassium, magnesium and calcium; Boron: diborane, boric acid and borax; Aluminium: alumina, aluminium chloride and alums; Carbon: oxides and oxyacid (carbonic acid); Silicon: silicones, silicates and silicon carbide; Nitrogen: oxides, oxyacids and ammonia; Phosphorus: oxides, oxyacids (phosphorus acid, phosphoric acid) and phosphine; Oxygen: ozone and hydrogen peroxide; Sulphur: hydrogen sulphide, oxides, sulphurous acid, sulphuric acid and sodium thiosulphate; Halogens: hydrohalic acids, oxides and oxyacids of chlorine, bleaching powder; Xenon fluorides.

Transition elements (3d series): Definition, general characteristics, oxidation states and their stabilities, colour (excluding the details of electronic transitions) and calculation of spin-only magnetic moment; Coordination compounds: nomenclature of mononuclear coordination compounds, cis-trans and ionisation isomerisms, hybridization and geometries of mononuclear coordination compounds (linear, tetrahedral, square planar and octahedral).

Preparation and properties of the following compounds: Oxides and chlorides of tin and lead; Oxides, chlorides and sulphates of Fe2+, Cu2+ and Zn2+; Potassium permanganate, potassium dichromate, silver oxide, silver nitrate, silver thiosulphate.

Ores and minerals: Commonly occurring ores and minerals of iron, copper, tin, lead, magnesium, aluminium, zinc and silver.

Extractive metallurgy: Chemical principles and reactions only (industrial details excluded); Carbon reduction method (iron and tin); Self reduction method (copper and lead); Electrolytic reduction method (magnesium and aluminium); Cyanide process (silver and gold).

Principles of qualitative analysis: Groups I to V (only Ag+, Hg2+, Cu2+, Pb2+, Bi3+, Fe3+, Cr3+, Al3+, Ca2+, Ba2+, Zn2+, Mn2+ and Mg2+); Nitrate, halides (excluding fluoride), sulphate and sulphide.

Organic Chemistry

Concepts: Hybridisation of carbon; Sigma and pi-bonds; Shapes of simple organic molecules; Structural and geometrical isomerism; Optical isomerism of compounds containing up to two asymmetric centres, (R,S and E,Z nomenclature excluded); IUPAC nomenclature of simple organic compounds (only hydrocarbons, mono-functional and bi-functional compounds); Conformations of ethane and butane (Newman projections); Resonance and hyperconjugation; Keto-enol tautomerism; Determination of empirical and molecular formulae of simple compounds (only combustion method); Hydrogen bonds: definition and their effects on physical properties of alcohols and carboxylic acids; Inductive and resonance effects on acidity and basicity of organic acids and bases; Polarity and inductive effects in alkyl halides; Reactive intermediates produced during homolytic and heterolytic bond cleavage; Formation, structure and stability of carbocations, carbanions and free radicals.

Preparation, properties and reactions of alkanes: Homologous series, physical properties of alkanes (melting points, boiling points and density); Combustion and halogenation of alkanes; Preparation of alkanes by Wurtz reaction and decarboxylation reactions.

Preparation, properties and reactions of alkenes and alkynes: Physical properties of alkenes and alkynes (boiling points, density and dipole moments); Acidity of alkynes; Acid catalysed hydration of alkenes and alkynes (excluding the stereochemistry of addition and elimination); Reactions of alkenes with KMnO4 and ozone; Reduction of alkenes and alkynes; Preparation of alkenes and alkynes by elimination reactions; Electrophilic addition reactions of alkenes with X2, HX, HOX (X=halogen) and H2O; Addition reactions of alkynes; Metal acetylides.

Reactions of benzene: Structure and aromaticity; Electrophilic substitution reactions: halogenation, nitration, sulphonation, Friedel-Crafts alkylation and acylation; Effect of o-, m- and p-directing groups in monosubstituted benzenes.

Phenols: Acidity, electrophilic substitution reactions (halogenation, nitration and sulphonation); Reimer-Tieman reaction, Kolbe reaction.

Characteristic reactions of the following (including those mentioned above): Alkyl halides: rearrangement reactions of alkyl carbocation, Grignard reactions, nucleophilic substitution reactions; Alcohols: esterification, dehydration and oxidation, reaction with sodium, phosphorus halides, ZnCl2/concentrated HCl, conversion of alcohols into aldehydes and ketones; Ethers:Preparation by Williamson’s Synthesis; Aldehydes and Ketones: oxidation, reduction, oxime and hydrazone formation; aldol condensation, Perkin reaction; Cannizzaro reaction; haloform reaction and nucleophilic addition reactions (Grignard addition); Carboxylic acids: formation of esters, acid chlorides and amides, ester hydrolysis; Amines: basicity of substituted anilines and aliphatic amines, preparation from nitro compounds, reaction with nitrous acid, azo coupling reaction of diazonium salts of aromatic amines, Sandmeyer and related reactions of diazonium salts; carbylamine reaction; Haloarenes: nucleophilic aromatic substitution in haloarenes and substituted haloarenes (excluding Benzyne mechanism and Cine substitution).

Carbohydrates: Classification; mono- and di-saccharides (glucose and sucrose); Oxidation, reduction, glycoside formation and hydrolysis of sucrose.

Amino acids and peptides: General structure (only primary structure for peptides) and physical properties.

Properties and uses of some important polymers: Natural rubber, cellulose, nylon, teflon and PVC.

Practical organic chemistry: Detection of elements (N, S, halogens); Detection and identification of the following functional groups: hydroxyl (alcoholic and phenolic), carbonyl (aldehyde and ketone), carboxyl, amino and nitro; Chemical methods of separation of mono-functional organic compounds from binary mixtures.

JEE Advanced 2014 Syllabus – Mathematics

Algebra: Algebra of complex numbers, addition, multiplication, conjugation, polar representation, properties of modulus and principal argument, triangle inequality, cube roots of unity, geometric interpretations.

Quadratic equations with real coefficients, relations between roots and coefficients, formation of quadratic equations with given roots, symmetric functions of roots.

Arithmetic, geometric and harmonic progressions, arithmetic, geometric and harmonic means, sums of finite arithmetic and geometric progressions, infinite geometric series, sums of squares and cubes of the first n natural numbers.

Logarithms and their properties.

Permutations and combinations, Binomial theorem for a positive integral index, properties of binomial coefficients.

Matrices as a rectangular array of real numbers, equality of matrices, addition, multiplication by a scalar and product of matrices, transpose of a matrix, determinant of a square matrix of order up to three, inverse of a square matrix of order up to three, properties of these matrix operations, diagonal, symmetric and skew-symmetric matrices and their properties, solutions of simultaneous linear equations in two or three variables.

Addition and multiplication rules of probability, conditional probability, Bayes Theorem, independence of events, computation of probability of events using permutations and combinations.

Trigonometry: Trigonometric functions, their periodicity and graphs, addition and subtraction formulae, formulae involving multiple and sub-multiple angles, general solution of trigonometric equations.

Relations between sides and angles of a triangle, sine rule, cosine rule, half-angle formula and the area of a triangle, inverse trigonometric functions (principal value only).

Analytical geometry:

Two dimensions: Cartesian coordinates, distance between two points, section formulae, shift of origin.

Equation of a straight line in various forms, angle between two lines, distance of a point from a line; Lines through the point of intersection of two given lines, equation of the bisector of the angle between two lines, concurrency of lines; Centroid, orthocentre, incentre and circumcentre of a triangle.

Equation of a circle in various forms, equations of tangent, normal and chord.

Parametric equations of a circle, intersection of a circle with a straight line or a circle, equation of a circle through the points of intersection of two circles and those of a circle and a straight line.

Equations of a parabola, ellipse and hyperbola in standard form, their foci, directrices and eccentricity, parametric equations, equations of tangent and normal.

Locus Problems.

Three dimensions: Direction cosines and direction ratios, equation of a straight line in space, equation of a plane, distance of a point from a plane.

Differential calculus: Real valued functions of a real variable, into, onto and one-to-one functions, sum, difference, product and quotient of two functions, composite functions, absolute value, polynomial, rational, trigonometric, exponential and logarithmic functions.

Limit and continuity of a function, limit and continuity of the sum, difference, product and quotient of two functions, L’Hospital rule of evaluation of limits of functions.

Even and odd functions, inverse of a function, continuity of composite functions, intermediate value property of continuous functions.

Derivative of a function, derivative of the sum,

difference, product and quotient of two functions, chain rule, derivatives of polynomial, rational, trigonometric, inverse trigonometric, exponential and logarithmic functions.

Derivatives of implicit functions, derivatives up to order two, geometrical interpretation of the derivative, tangents and normals, increasing and decreasing functions, maximum and minimum values of a function, Rolle’s Theorem and Lagrange’s Mean Value Theorem.

Integral calculus: Integration as the inverse process of differentiation, indefinite integrals of standard functions, definite integrals and their properties, Fundamental Theorem of Integral Calculus.

Integration by parts, integration by the methods of substitution and partial fractions, application of definite integrals to the determination of areas involving simple curves.

Formation of ordinary differential equations, solution of homogeneous differential equations, separation of variables method, linear first order differential equations.

Vectors: Addition of vectors, scalar multiplication, dot and cross products, scalar triple products and their geometrical interpretations.

Syllabus for Aptitude test for B.Arch Programmes

Freehand drawing: This would comprise of simple drawing depicting the total object in its right form and proportion, surface texture, relative location and details of its component parts in appropriate scale. Common domestic or day-to-day life usable objects like furniture, equipment, etc., from memory.

Geometrical drawing: Exercises in geometrical drawing containing lines, angles, triangles, quadrilaterals, polygons, circles etc. Study of plan (top view), elevation (front or side views) of simple solid objects like prisms, cones, cylinders, cubes, splayed surface holders etc.

Three-dimensional perception: Understanding and appreciation of three-dimensional forms with building elements, colour, volume and orientation. Visualization through structuring objects in memory.

Imagination and aesthetic sensitivity: Composition exercise with given elements. Context mapping. Creativity check through innovative uncommon test with familiar objects. Sense of colour grouping or application.

Architectural awareness: General interest and awareness of famous architectural creations both national and international, places and personalities (architects, designers etc. ) in the related domain.

Candidates are advised to bring geometry box sets, pencils, erasers and colour pencils or crayons for the Aptitude Test.

JEE Advanced 2014 examination pattern

JEE (Advanced) 2014 will have two papers; Paper 1 and Paper – 2, each will have three parts – Physics, Chemistry, and Mathematics.
In both the papers, parts 1, 2, and 3 there will be 20 questions each in Physics, Chemistry, and Mathematics, respectively.

Pattern of JEE Advanced 2013 Question Paper

In Paper-1, each part had three sections. Section-1 had 10 multiple choice questions each having one correct answer with maximum of 2 marks with no negative marks for incorrect answer; Section-2 had 5 multiple choice questions each having one or more correct answer(s) with maximum of 4 marks and for incorrect answer -1 marks; Section-3 had 5 integer answer type questions each having maximum of 4 marks and for incorrect answer -1 marks.

In Paper-2, each part had three sections. Section-1 had 8 multiple choice questions each having one or more correct answer with maximum of 3 marks; Section-2 had 8 multiple choice questions having only one correct answer with maximum of 3 marks; Section-3 had 4 multiple choice questions each having one
correct answer with maximum of 3 marks. There were negative markings for wrong answers in all the Sections.

A candidate could have scored anything between −30 to 180 in Paper-1, and between −60 to 180 in Paper-2. That is, marks of a candidate might have taken any value between −90 to 360, with the minimum and maximum possible marks in each subject being −30 and 120, respectively.

Relaxations of 10% and of 50% were given on the average marks in each subject for considering the OBC and SC/ST/PD category candidates for ranking.

JEE Advanced 2013 Cut off

Category MQMR Aggregate cut-off
Chemistry Physics Mathematics
GE 10% 10% 10% 35% (126)
OBC 9% 9% 9% 31.5% (113)
SC 5% 5% 5% 17.5% (63)
ST 5% 5% 5% 17.5% (63)
PD 5% 5% 5% 17.5% (63)

To know cut off of previous years check this link